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"_.. A still further step would be to show that the basic principles
of language are formulated in terms of notions drawn from the
domain of (virtual) conceptual necessity" (p.6)

N. Chomsky, 1992

We consider a condition F, which relates the syntactic structures' of a natural
language and their interpretation in any other system, in particular in ones,
considered here, we may plausibly call semantic or "conceptual-intentional”.

F is general: it is neither language nor structure specific, nor even rule,
structure, or representation fype specific. Symbolic systems L which satisfy F are
ones which are, in a sense made precise in 3, faithful to the syntactic structure of
L. Accordingly we shall refer to F as a Fidelity Principle. Mnemonically:

() F
Semantic interpretation is faithful to syntax®

I claim that F as defined in 3 expresses a very general truth about natural
language. In the terms of CH-92, F is the interpretative analogue of a largely
language invariant “computational procedure” which derives the syntactic
structures' of a language L from the partially L-specific lexical items and
morphology. By contrast, symbolic systems that fail F lack a regular relation
between form and interpretation. Such "systems” seem to me conceptually ill
suited to the representation of information, and would be decidedly unlanguage-
like. Thus I offer F as a linguistic candidate for a "(virtual) conceptual necessity”
(without suggesting that F was intended in Chomksy 1992 (CH-92)).

To support F and to explicate the notions in terms of which it is formulated,
we argue that it derives (2).

2) Anaphor-Antecedent Asymmetry (AAA)

In minimal instances of the Anaphor-Antecedent relation we
cannot interchange an anaphor and its antecedent preserving
both syntactic form and logical meaning



1. Anaphor-Antecedent Asymmetry (AAA).

A-expressions are ones that must be interpreted as referentially dependent ina
certain way (see 2). Lexical A-expressions will sometimes be called anaphors.
Some examples of A-expressions are italicized in (3).

(3) a. Some student's teacher blamed himself for the accident.
b. One of the students criticized everyone but himself
c. No student criticized both himself and his teacher

Since A-expressions are semantically defined, the following query makes sense:
Query 1 (Q1) Given a grammar G for a language L,

a. Is the set of A-expressions of L syntactically identifiable in terms of G ?
b. If not, is it lexically identifiable (= computable given G and the set
lexical A-expressions.)?

To vary terminology in contexts like Q1a we may replace syniaciically with
structurally and identifiable with definable or characterizable. A fully general
definition of this notion is given in 2.2. We also provide a semantic definition of
A-expression and exhibit a formal language Little English in which the set of A-
expressions is not syntactically definable in terms of the grammar we provide.
But that set is lexically identifiable. The example shows that:

i. Semantically defined sets may fail to be syntactically definable. SoQla
s not circular or trivial. Natural languages could fail it; and

ii. The ability to structurally identify A-expressions is not a conceptual
necessity. The simplicity and naturaleness of the example support this.

Much empirical work® (esp. the "skeptical" Keenan 1987, 1988) leads me to
think that natural languages do structurally identify their A-expressions. So I
think that Q1a, and a fortiori Qlb, are to be answered affirmatively (though in
the absence of adequate grammars no firm conclusion can be drawn). But a full
yea to Q1 does not disturb the truth of (ii). (i) only claims that the structural
identifiability of A-expressions is not conceptually necessary.

By contrast, I claim that the set of logically true sentences of (real) English is
not syntactically definable in terms of any adequate grammar for English. (We
think of a sentence as being logically true iff it is true no matter what the world
is like). Here is one argument (among infinitely many) that supports this claim



(and helps us understand it better): (4a,b) should be syntactically isomorphic (=
have the same syntactic structure) on any adequate grammar of English.

(4) a. Either fewer than thirty or else more than ninety linguists were martyred
b. Either fewer than ninety or else more than thirty linguists were martyred

I know of no grammaticality based property which distinguishes (4a) from (4).
Such a property would have to distinguish zhirty from ninety. So these Ss appear
to be syntactically identical; they are built in the same way, differing only trivially
with regard to lexical choice. But (4b) is logically true: every number, in
particular the number of linguists who were martyred, is either less than 90 or
greater than 30. But (4a) is not logically true. It is false in any situation in which
the number of linguists martyred is exactly 37.

Thus just knowing the syntactic form of an English sentence is not sufficient
to decide whether it is logically true or not. Ss like (4a,b) have the same form
but differ wrt their logical truth This can happen because part of what determines
the truth of a sentence is the meanings of its lexical items and we can often find
semantically distinct lexical items which cannot be syntactically distinguished.
Indeed, the notion grammatical category serves, in part, to class together
expressions which can be discriminated semantically but not syntactically.

In Little English, himself is an A-expression but Aim is not. But the syntax of
this language does not distinguish between him and himself -- a derivation
beginning with one can always have it replaced by the other preserving well
formedness (but not of course interpretation). So in this L we find syntactically
isomorphic expressions (e.g. himself and him; both himself and john and both him
and john, ... ) which differ with regard to being A-expressions. That is, the set
of A-expressions is not syntactically identifiable in Litrle English.

Real English seems to differ from our artificial example in this regard. himself
can not always replace him initially in a derivation preserving grammaticality:
Both John and Bill criticized him is grammatical but Both John and Bill criticized
himself is not. 1 suspect that the only expression himself is isomorphic to in
English is himself itself (but we need an adequate grammar to support this!). We
shall later characterize "grammatical words" as those expressions that are
isomorphic only to themselves.

It seems then that the property of being interpreted anaphorically is "coded” in
the syntax of English in a way in which the property of being logically true is not,
a result in accordance with the "naive" intuitions of generative grammarians.



Secondly, as per work in Binding Theory, we understand that the anaphor
himself in (5) stands in the is anteceded by (= AA) relation to each student’s
advisor. Tt cannot stand in that relation to each student or to noone in (3).

(5) Noone thought that each student's advisor disqualified himself

Query 2 (Q2)

a. Does every natural language L have a grammar G in terms of which the
AA relation in L is syntactically definable?

b. If yes, then does there exist a uniform definition -- one that applies in the
same way in all Ls?

Q2a says that given an occurrence of an A-expression o in an expression G we
should be able to specify in terms of the grammar G just which (occurrences of)
expressions in ¢ are possible antecedents for . Q2b says that this computation
is executed in the same way in all Ls.

Much work in generative grammar’ is consistent with an affirmative answer to
Q2a. Keenan (1987, 1988, 1991) plus a few remarks below suggest that Q2b
should be answered negatively. But we do not pursue this question here.

Rather, we investigate the notion of asymmetry in AAA. Our intuition is that
languages are not indifferent as to the relative presentation of A-expressions and
their antecedents. They care which is which. But how to say this rigorously?

We begin with an example. An adequate grammar of English will enable us
to say that (6a,b) have the same syntactic structure (though different grammars
may differ as to just what that structure is):

(6) a. John criticized Bill b. Bill criticized John

(6a,b) differ just by choice of lexical item -- once those choices are given the
derivation and interpretation of the two Ss proceeds identically. So showing that
(6a,b) have the same structure will involve matching up the steps in their
derivations, beginning with the matching of the lexical items: John with Bill,
criticized with criticized, and Bill with John. The matched expressions are images
of each other under the structure preserving maps (isomorphisms) which say that
(6a,b) have the same structure (= are isomorphic). Now consider:

(7) a. John criticized himself b. Himself criticized John



Could we have a language like English except that in addition to Ss like (7a),
we systematically find logical paraphrases like (7b) which are not only
grammatical but are syntactically isomorphic to (7a), just as (6b) is to (6a)?

The AAA says no. But is this claim is consistent with linguistic reality?

As regards Modern American English, Ss like (7b) are simply ungrammatical
and so will satisfy AAA in virtue of exhibiting some sort of structural difference
from (7a). In some varieties of English however, notably Irish English®, (7b) is
perfectly grammatical. But it still satisfies AAA since it does not exhibit the
binding relations of (7a) and so is not a logical paraphrase of it. Rather the
subject himself in (7b) is deictically interpreted as something like “the most
prominent male" in the context of utterance. (And in Wair a minute, herself is
getting herself ready (J. McCloskey (pc); See Keenan 1988) the first occurrence
of herself is deictically interpreted as the prominent female in context).

Thus our intuition of asymmetry could not have been captured simply by
"cannot be interchanged preserving grammaticality”.

Tougher nuts concern the freedom of anaphor-antecedent order (* scrambling")?
in Ls like Bengali, Hindi, and Korean. Arguments of transitive verbs in these
head-final Ls are distinguished by overt case marking, their relative order
preverbally being rather free, even when one is an anaphor whose antecedent is
properly quantified (9) or interrogative (10). (Nominative marking is -ka
following a vowel, -i following a consonant).

(8) a. John-i caki-casin-ul  pinanhayssta KOREAN
John-nom self- -acc criticized
John criticized himself.

b. caki-casin-ul John-i pinanhayssta
self- -acc John-nom criticized
John criticized himself

(9) a. Nwukwunka(-ka) caki-casin-ul pinanhayssta
someone(-nom)  self- -acc criticized
Someone criticized himself

b. Caki-casin-ul nwukwunka(-ka) pinanhayssta
self- -acc someone(-nom) criticized
Someone criticized himself



(10) a. Nwuka caki-casin-ul pinanhayss-ni
Who  self- -acc criticized-Q
Who criticized himself?

b. Caki-casin-ul nwuka pinanhayss-ni
self- -acc  who criticized-Q
Who criticized himself?

So in Korean, A-expressions like caki-casin-ul may be interchanged with their
antecedents preserving both grammaticality and logical meaning.

The AAA claims that the (a,b) pairs in (8) - (10) are not syntactically
isomorphic. While in agreement with the (limited) generative literature on
"scrambling”, this claim is not at all obvious.

The tough counter claim to the AAA here is that the identity map id is an
isomorphism relating each (a,b) pair in (8) - (10). That map does not preserve
linear order: John-i precedes caki-casin-ul in (8a) but id(John-i) = John-i does
not precede id(caki-casin-ul) = caki-casin-ul in (8b). But, the empirical argument
would go, the relative order of arguments here is not part of Korean structure.
Case marking codes grammatical function so fixing order is of no value (and so
by economy isn't used). But NPs are dumb in morphologically impoverished

languages (English) so the logically more complicated extrinsic ordering is
invoked as a default.

There is, I think, serious prima facie support for this position. Most crucially,
preserving case markers is an important (though perhaps not the only) determinant
of syntactic sameness. This is seen by the fact that merely interchanging the NPs
in (8) without moving their case markers results in serious ungrammaticality.

(11) a. * Caki-casin-i  John-ul pinanhayssta
self- -nom John-acc criticized
He-self criticized John

b. * John-ul caki-casin-i ~ pinanhayssta
John-acc self- -nom criticized
John criticized he-self

We are concerned here to show that it is conceptually possible to have a
language which behaves as Korean appears 10 and which satisfies the AAA.
Whether real Korean satisfies the AAA is a serious empirical question (see €.g.
Lee, 1993) beyond the purview of this article’. Accordingly we exhibit in 2.5 a
Little Korean in which the AAA is satisfied, case marking is non-trivially
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structural (not just a "coding” for hierarchical structure), and the C-command
relation between an A-expression and its antecedent can vary freely preserving
semantic interpretation. So the syntactic and associated semantic differences
between Little English and Little Korean are determined by overt morphological
differences between these languages.

We will see that an important conceptual plus for our notion of structure is that
morpheme identity, category identity, and syntactic hierarchy (e.g. dominates) fall
out as special cases of structure -- none being derivative from the other. Thus our
notion of structure properly generalizes the standard one.

2. Little Languages: Generalized Structure

2.1 Little English We exhibit a grammar, ENG, whose language L(ENG) =
Little English is used to illustrate the notion synzactically definable in G.

ENG has some lexical nominative NPs (NPnom's): john and he; some lexical
accusative NPs, NPacc's: john, him, and himself; some lexical two place
predicates, P2's: praised and criticized; and some lexical one place predicates,
Pls: laughed and cried. Rules combine P2s with NPacc's to form Pls, and Pls
with NPnom's to form Ss. For each of these categories C, expressions of
category C may combine in the appropriate way with both...and..., either...or...,
and neither...nor.... to form a complex expression of the same category. L(ENG)
has a simple context free grammar:

S --> NPnom + Pl; P1 --> P2 + NPacc
C --> both C and C, either C or C, neither C nor C,
all C € {NPnom, NPacc, P2, P1, S}

NPnom -—-> john, bill, tom, bob, he

NPacc --—-> john, bill, tom, bob, him, himself
P1 ---> laughed cried

P2 ---> praised, criticized

We present ENG in our Generalized Grammar format: First, we must define
the vocabularly V = {john, ...,cried, ...,both,...} used. Then we define CAT,
the set of categories used: {NPnom, NPacc, S, P1, P2, CONTJ}. (We have added
CONJ = Conjunction in order to illustrate a slight generalization). Third, we
define the set LEX of lexical expressions.



In general an expression is treated as a pair (s,C), where C is a category
symbol and s is a string built from elements of V. V* is the set of finite strings
of elements of V, and V'xCAT is the set of possible expressions. In ENG
(john,NPnom) is an element of LEX. So is (john,NPacc). LEX is defined (in
this case, not necessarily) by listing.

Notation: If 6 = (s,C) is an expression we write Cat(c) or o, for the category
of &, and we write String(c) or o, for its string part. E.g. Cat(praised bill,P2)
= P2, String(praised bill,P2) = praised bill.

Finally, we represent the ways of combining expressions to build more complex
ones by (partial) functions, called the generating or structure building functions
of G. The single most important determinant of "structure” lies in specifying the
domains ("structural descriptions") of these functions.

For example, given V and CAT as above for ENG, we define a function F2
which builds P1s from P2s and NPacc's as follows. The domain of F2, Dom(F2),
is the set of pairs <o,t> of possible expressions which meet the condition that
Cat(t) = P2 and Cat(c) = NPacc. The action of F2 is given by:

F(c,1) = <1, + o, P1>
where we use '+ for concatenation (with or without a "space” as is convenient).

Thus F2 takes a possible expression T of category P2 and a possible expression
o of category NPacc and yields a possible expression of category P1 whose string
part is the string part of T followed by the string part of ©.

Similarly F1 is defined to build expressions of category S from pairs of
category NPnom and P1 respectively.

We illustrate the coordination rules with AND. It takes as arguments triples
<p,0,1> of possible expressions, where p is simply <and,CONJ> and Cat(oc)
= Cat(7) is in {NPnom, NPacc, S, P1, P2}, the set of coordinable categories.
The value of AND at such a triple is given by

AND(p,0,1) = <both + o; + and + 75, T,>

Thus AND coordinates the string parts of ¢ and 1 in the obvious way, and the
category of the resultant expression is the same as that of its conjuncts. The
functions OR and NOR are defined comparably.



Finally, we define L(ENG), the language generated by the grammar ENG, to
be the closure of LEX under the generating functions’. That is, L(ENG) is the
set of expressions obtainable from LEX by applying the generating functions
finitely many times in any way in which their structural descriptions are satisfied.

In sum: a (generalized) grammar G is a four-tuple <V,CAT,LEX,F> with
LEX c V'xCAT, F a set of partial functions each taking sequences of possible
expressions to possible expressions, and L(G) the closure of LEX wrt F. And,

Full Expressive Power
Any collection of sets is definable by a generalized grammar®

FEP guarantees that our format of presentation imposes no constraints whatever
on the class of languages that can be represented. In particular common X'
systems are easily coded in this format (see Stabler & Keenan, 1993). (So any
constraints which distinguish natural languages from other structures must be
explicitly given. Nothing follows from the format of presentation itself).

2.2 Generalized Structure

We make precise the idea that two expressions have the same structure if we
can match their lexical items and derivation steps in an appropriate way.

def 1 A function h from L(G) — L(G) preserves structure iff for all snxtre
building functions F, (i) and (ii) below hold:

i. h preserves DomF
(= if a tuple o of elements of L(G) is in DomF then h(o) is also in DomF)
ii. h commutes with F

(= F mapsotot implies F maps h(o) to h(z)).

(i) says that if a structure building function F can recognize (structurally
analyze) a sequence ¢ of expressions then it can also recognize h(c). So h
preserves the property of being analyzable by a structure building function.

(i) says that a structure building function F treats an argument ¢ and its
image under h "the same": the structure that F builds from h(c) differs from that

which it builds from o solely by what h does to c. Pictorially, the following
diagram commutes.



h(c) > h(7)

-

F

"Commutes” means that if we apply F to ¢ and then h to the result, we get the
same object as if we had applied h to o first and then F to the result. We shall
often use such diagrams to express the intuitive notion "preserves structure"”.

notation & terminology A function h which preserves structure as above is
called a structure map (for G). If A is a subset of L(G) then by h(A) is meant
{h(a)]a € A}. Andif c is a sequence, say ¢ = <a,B,y>, then by h(c) is meant
<h(a),h(B),h(y) >.

def 2 Given G with o,T in L(G), we say that o is isomorphic to 1 in G, written
G =g 1, iff there is a structure map h such that h(s) = tand h(t) = o©.

So two expressions are isomorphic in G iff there is a structure preserving map
mapping each to the other. We note that the relation isomorphic in G is an
equivalence relation (anything is isomorphic to itself; if o is isomorphic to T then
1 is isomorphic to o; and if p is isomorphic to ¢ and 6 is isomorphic to T then p
is isomorphic to 7). And our final definition

def 3 A subset P of L(G) is syntactically identifiable iff for all o,
cePandoc=gt = 1€P

So given two expressions with the same structure, P must say yes to both,
or no to both, but it cannot distinguish them. If it could then it would be relying
on properties other than their syntactic structure. (Replacing 'subset' by 'relation’
generalizes def 3 to relations.)

2.3 Structure: A Linguistic Generalization
Our definitions above do not take the notion of structure as basic. What is
basic is the notion preserves structure. We may think of the "structure” of an

expression as those properties it must share with any expression it is isomorphic
to. In a (useful) phrase:

/0



(12)  Structure is what the Structure Preserving Functions Preserve

NB: (12) is not circular. We have already defined what the structure
preserving functions are (relative to a grammar G). We may now ask, and the
answer is enlightening, just what it is that these functions may or must preserve.

i. Structure maps must preserve the hierarchical structure of derivation trees.
E.g. let h be a structure map for ENG. Its value at <john laughed,S> is given
by the tree on the right in (13), where <john laughed,S> is represented by the
tree on the left -- a tree that represents the result of applying F1 to the pair
<john,NPnom>, <laughed,P1>. The reader may show that this follows
directly from the fact that h preserves Dom(F1) and commutes with it.

S h S
azx N - >
(john,NPnom) (laughed,P1) h(john,NPnom) h(laughed,P1)
NPnom
( | and (john,NPnom) are notational variants).
john

Thus we represent the action of a structure map on a standard tree by keeping
the hierarchical structure of the tree the same and applying the function to the
lexical leaves. In short, structure maps preserve hierarchical structure. They
may preserve much else besides.

ii. Structure maps may preserve category. They provably do in ENG: if
Cat(c) = X then Cat(h(c)) = X. So in Lirtle English the category of an
expression is part of its structure. It is part of what an expression must share with
any expression it is isomorphic to. This fact does not follow from the definition
of structure map. Not all categories must be preserved in Little Korean below.
And current linguistic work suggests that preserving category is not a conceptually
necessary part of structure. At least X' notation in part is set up to capture
structural similarities among expressions of different categories.

iti. Structure maps may preserve particular expressions (e.g. "bound
morphemes"). For example in ENG all structure maps map (and, CONJ) to
itself. So if (and,CONJ) =gy T then T = (and, CONJ). We suggest:

Thesis The "grammatical" morphemes of a language are just the expressions
which are isomorphic only to themselves’. In a phrase,

i



Grammatical morphemes are the fixed points of syntactic isomorphisms

An object x is a fixed point of a function f iff f(x) = x. f is said to fix x. The
thesis says then that the grammatical morphemes of a language are those that an
arbitrary expression must share with any expression it is isomorphic to. This is
a non-trivial characterization of grammatical morpheme.

Note then that in L(ENG), (both laughed and cried,P1) does not have the same
structure as (either laughed or cried,P1), even though their derivation trees are
isomorphic qua trees, differing just on the lexical items. Reason: on the G we
gave, identity of coordinating conjunction is a part of structure -- something that
must be preserved by the structure preserving maps. We thus issue:

Warnings to Tree Lovers

1. Non-isomorphic expressions may have isomorphic trees
2. A fixed (unambiguous) expression may have non-isomorphic trees
3. Expressions generated in a fixed way may be isomorphic in

one grammar and not isomorphic in another
(Only the first warning has been instantiated here.)

The Linguistic Generalization: Since structure is what the structure maps
preserve, and morphemes and categories may be preserved, these notions may be
just as "structural” as syntactic hierarchy in a given language. Thus we need not
think of Korean case marking as simply coding hierarchy relations. It may be
structural on its own -- that is, preserved under syntactic isomorphisms.

Finally, let us consider some sets of expressions (and relations between
expressions) which are (or are not) syntactically identifiable in ENG. We note
first some sets that are syntactically identifiable in all G (see Keenan and Stabler,
1991) for many more examples and more extensive discussion):

Theorem 1: Universally Identifiable Sets

Given a grammar G,

1. L(G) and @ are syntactically identifiable

So if o is isomorphic to T and & is in L(G) then t must also be in L(G).
Thus grammatical expressions are not isomorphic to ungrammatical ones.

fd



2. a. If A and B are identifiable so is A -- B, the set of things in A not in B

b. The union (intersection) of arbitrarily many syntactically identifiable sets
is itself syntactically identifiable

(2a.b) guarantee that we can define new identifiable sets from old ones using
and, or and not, and universal and existential quantification.

3. For 6 € L(G) and [o] the set of things isomorphic to o, [o] is syntactically
identifiable, and no non-empty proper subset of [o] is identifiable

4. The occurs in relation is syntactically identifiable
0

Given a grammar G and a category C, write PHg(C) for the set of expressions
in L(G) of category C. A o € PHG(C) is called a phrase of category C (in G).

Theorem 2: Syntactically identifiable sets in ENG 1
1. For all categories C of ENG, PHgy(C) is syntactically identifiable

Thus any two isomorphic expressions in L(ENG) have the same category.
Also PHo(NPnom) -- PHpyg(NPacc), the set of NPnoms that are not also
NPaccs is syntactically identifiable (using Theorem 1.2a here).

2. The set ANA of expressions of category NPacc which contain an
occurrence of himself is not syntactically identifiable in ENG.
O
Note: ?ANA is a reasonable first guess at a "syntactic" definition of the A-
expressions of L(ENG). But it turns out that this set is not syntactically definable
in terms of the grammar ENG. Reason: ENG does not allow us to distinguish
himself from him. In this grammar that is like trying to distinguish john from bill.
No grammatical process treats them differently.

More formally, 2ANA is not syntactically identifiable because there is a
structure map h which interchanges (himself,NPacc) and (him,NPacc). (h fixes
the other lexical items and extends as a "string homomorphism” to the complex
expressions). But 2ANA is not closed under h. E.g. (himself,NPacc) € 2ANA
but h(himself,NPacc) = (him,NPacc) & 7ANA.

Thus we have pairs of expressions with the same syntactic form one of which

is in ANA and the other of which is not. So membership in 2ANA cannot be
predicted from the syntactic form of the expression.
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2.4 A Semantic Definition of A-expression

Given a domain D of (possibly abstract) objects about which we think of
ourselves as speaking on some occasion, we shall think of P1's as (minimally'®)
interpreted as subsets of D. Call such subsets (extensional) properties. P2's will
be interpreted as binary relations over D, that is, as sets whose elements are
ordered pairs of elements of D. Boolean compounds of Pn's are interpreted as the
corresponding set theoretic operations of the denotations of the expressions
compounded. E.g. noting interpretations in bold, the interpretation of (laughed
and praised bill, P1) is laugh ~ praise bill. That is, an object in D has the
property expressed by laughed and praised bill iff that object lies in the
interpretation of (laugh,P1) and also in the interpretation of (praised bill,P1).

Proper nouns and (him,NPacc) will denote (= be interpreted as) individuals,
functions (defined below) which map properties into {true,false} and binary
relation to properties (and more generally n+1 ary relations to n-ary relations).

def 4 For each d € D, we define I, by:
i. I(p) =trueiffd e p [all subsets p of D] and
ii. I(R) = {a € D] <a,d> € R} [all binary relation R over D]
I, is called the individual generated by d.

Suppose for example john € D and both (john,NPacc) and (john,NPnom) are
interpreted as the individual generated by john. Then (john laughed, S) will be
interpreted as true iff john € laugh, and (criricized john, P1) will be interpreted
as the set of objects a € D such that <a,john> e criticize. That is, (criticized

john, P1) denotes the set of objects which stand in the criticize relation to john.

Crucially now (himself,NPacc) is interpreted by the function self below, whose
domain is just the set of binary relations over D:

def 5 selfR) = {a € D| <a,a,> € R}

One computes then that (john criticized himself,S) is interpreted as true iff
< john,john> € criticize.

Boolean compounds of NPs are interpreted pointwise. E.g. (criticized both
john and himself, P1) denotes the intersection of the denotation of (criticized john,
P1) with that of (criticized himself, P1): L, (criticize)  self(criticize). So an
object a is in this set iff <a,john> € criticize and <a,a> € criticize.

I



Now, to semantically define A-expressions, we want to find a semantic
property which distinguishes for example (both john and himself, NPacc) from
(both john and bill, NPacc). Keenan (1987) provides just such a property (one
that is independent of which object NPs the language possesses). An object NP
denotation is a function mapping binary relations to properties. If the NP is not
anaphoric then its function f puts an object b in the set it associates with a relation
R just by checking bR, the set of things that b bears R to. It does not depend on
what object b is. That is, f could not make a different decison concerning some
other object b' that bore R to the same things b did. By contrast an anaphoric
function can use the identity of b in making its decision.

For example, suppose that the people John praised are exactly those which
Bob criticized. Then (14a,b) must have the same truth value, so most of Jim's
students is not anaphoric. But (15a,b) may have different truth values: if John
praised just Mary, Bob, Susan, and Sam. Then (15a) is false but (15b) true.

(14) a . John praised most of Jim's students
b. Bob criticized most of Jim's students

(15) a. John praised both Sam and himself
b. Bob criticized both Sam and himself

So we define:
def 6 An expression interpreted as a function mapping binary relations to
properties is an A-expression iff in every situation its denotation f satisfies [A] and
in some situations it fails [B].
[A] aR = aS = a e f(R)iff a € {(S)
[B] aR = bS = a € f(R) iff b € £(S)
Using this properly semantic definition of A-expression we may observe:
Theorem 3
1. (himself,NPacc) is the only lexical A-expression in L(ENG)
2. The set of A-expressions of L(ENG) is infinite _
3. The set of A-expressions of L(ENG) is not syntactically identifiable
3.3 follows directly from 3.1 plus (himself,NPacc) ~gng (himNPacc). Also, we

intended that ENG satisfy usual C-command conditions on the distribution of
anaphors so that we could properly contrast it with Little Korean. However bill
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asymmetrically C-commands himself in (16) but is not interpretable as its
antecedent (nor can it be in real English).

(16) (john praised either bill or both tom and himself, S)

Finally we observe that the AA (Anaphor-Antecedent) relation, defined below,
is syntactically identifiable (a fact that does not, as we have seen with 7ANA,
follow from its apparent syntactic form)

(17) « is a structurally possible antecedent of B in y iff 3n € PHp(P2),
Fl(a,F2(B',m)) occursin Y

2.5 Little Korean

We exhibit a grammar, KOR, which illustrates how case marking may be
directly structural and how A-expressions may asymmetrically C-command their
antecedents, but in which, as in L(ENG), the AA relation is syntactically
identifiable. In fact in L(KOR) the (infinite) set of A-expressions is syntactically
identifiable. The essence of our grammar is summarized in the two derivation
trees below, plus several comments on them. We state the grammar informally,
leaving details to the reader on the model for ENG.

ws S I
KPn Pln KPa Pla

ANVA VANRVAS

NP K §Pa\ P2
Ly Y
|
john -nom himself -acc praised himself-acc  john -nom praised

There are only two strings of category K "Casemarker", -nom and -acc, both
lexical, and there are only four strings of category NP, john, bill, pron, and
himself, again all lexical. A generating function CASEMARK combines all NP
strings with -acc to form KPa's, accusative Case Phrases, and it combines all NP
strings except himself with -nom to form KPn's, nominative Case Phrases. So
himself-nom is not a string of any category in L(KOR) and (cf real Korean) john
and himself in e.g. (18b) cannot be interchanged preserving grammaticality.
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F2 combines KPa's and P2s to make Pln's. It also combines KPn's and P2s
to make Pla's. F1 combines Pln's with KPn's to make S's. It also combines
Pla's with KPa's to make Ss. So KPs and Pls agree when they combine to
make Ss. There are two lexical P2's as in ENG, two lexical Pln's (laughed,
cried) and no lexical Pla's. The coordinable categories are P2, Pla, Pln, S,
KPa, and KPn. Note the following structural facts re L(KOR):

Structural Facts re Little Korean

1. The categories K, NP, CONIJ, and S are preserved by all structure maps.
Soe.g. structure preserving maps send casemarkers only to casemarkers.

2. No structure map sends anything other than (himself,NP) to (himself,NP).
Thus (himself,NP) is isomorphic only to itself, and so is a grammatical
word in L(KOR)

3. For all structure maps h, h(-nom,K) # h(-acc,K). So we may not collapse
casemarkers preserving structure. But a structure map may interchange
(-nom,K) and (-acc,K) thus interchanging KPn's and KPa's, and Pln's
and Pla's, provided it maps nothing to (himself,NP).

4. a. (18a) and (18b) are not isomorphic

b. (john-nom bill-acc praised, S) and (bill-nom john-acc praised, S)
are isomorphic

Fact 4 is subtle, but is provable from our definitions. An isomorphism h
between (18a) and (18b) would map (jokn-nom,KPn) to (himself-acc,KPa),
interchange (-nom,K) and (-acc,K), and map (john,NP) to (himself, NP).  But
< (-acc,K), (john,NP)> € Dom(CASEMARK) and its image <(-nom,K),
(himself,NP)> under h is not, so h fails to preserve the domains of all the
generating functions and so is not a structure map, contradicting the assumption.

In the semantics for L(KOR), the casemarkers (actually just (-nom,K), n - 1
casemarkers suffice to distinguish n KPs) are interpreted in an essential way. It
turns out that (18a,b) are logically equivalent in L(KOR), notwithstanding that the
A-expression and its antecedent reverse their asymmetric C-command relations.

The core of the semantics is this: proper nouns and pron are interpreted as
individuals, and (himself,NP) is interpreted as self, as in ENG. (-acc,K) denotes
the identity function, so KPa's behave like NPs in L(ENG). In particular they
map binary relations, P2 denotations, to properties, possible Pin denotations.
What is new is the interpretation of (-nom,K), KPn's, and Pla's.
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These new denotations are all determined by the interpretation nom of the
bound morpheme (-nom,K). Let us write [R — P} for the set ¢ functions from
the set of binary relations over the domain D into the set of properties over D.
Then nom, by definition, takes individuals (its only possible arguments) to
functions which (1) take properties to truth values, as in ENG, and (2) take binary
relations to functions mapping [R — P] into {true, false}, as follows:

nom(I)(R)G) = I(G(R))

So for example, the interpretation of (himself-acc john-nom praised, S) is
((nom(]iohn))(praise))(self) = L (self(praise)) which is just the interpretation of
(john-nom himself-acc praised,S). Thus the fact that (18a) and (18b) are logical
paraphrases is due entirely to the interpretation of the bound morphology in Little
Korean, one of the obvious areas where languages admit of language particular
material. And we observe:

Theorem 4

1. The set of A-expressions in L(KOR) is syntactically definable. (Note that
A-expressions in Little Korean are KPa's)

2. The relation SPAyog, is a structurally possible antecedent of, defined below
is also syntactically identifiable

def 7 <ao,B,y> € SPAyo iff & € PHyor[KPn] & 38 F1(a,F2(B,0)) occurs in
y or F1(B,F2(,d)) occurs in .

Thus in Ls in which case marking is part of structure, it is possible to
"scramble” A-expressions and their antecedents reversing C-command relations,
without losing the ability to structurally identify the Anaphor-Antecedent relation
(or even the set of A-expressions itself).

3. Condition F (or Patience Rewarded)

(Thanks separately to Dorit Ben-Shalom, Dusko Pavlovic and Ed Stabler for
discussion of the points below).

Little Korean is probably as close as we getto a language that can interchange
A-expressions and their antecedents freely without violating Anaphor-Antecedent
Asymmetry (AAA). Ultimately satisfying AAA is due to the fact that himself-
nom is not a string of category KPn. If we weakened the grammar to allow it
("Irish Korean") then we would generate as Ss strings like himself-nom cried and
himself-nom cried and criticized bill. These Ss would force himself-nom to
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receive a non-anaphoric interpretation, so (18a,b) would not be logical paraphrases
and AAA would still be satisfied.

But now that we are clear as to what counts as a syntactic isomorphism let us
see what a "language” would look like that really did violate the AAA. The
attempt will lead us to understand a condition on interpretation which runs
sufficiently deep that, to my knowledge, it has never been articulated as a
constraint on natural languages. This is, of course, the Fidelity condition F.

Part of F is familiar from standard considerations of compositionality: the
interpretation of derived expressions should depend on the interpretation of those
they are derived from (up to listable exceptions, e.g. idioms). This is, I think,
conceptually necessary. If e.g. You're standing on my foor! could freely mean
Most unicorns like cabbage or else none do then language would have no value
as a system of representation (and derivatively of communication) and so could
not be used to satisfy the conceptual-intentional functions we do in fact use it for.

But F will say more than this, and the more echos curiously claims in CH-92
concerning the constancy across "languages” of the computational procedure used
in deriving expressions from the lexicon. The lexicon and morphology of
languages do vary, but one expects the ways of building complex expressions from
simpler ones to vary rather less, precisely because of their generality.

Here is a semantic analogue of these syntactic claims: Lexical items may differ
semantically even when they are syntactically indistinguishable (John/Bill,
probably laugh/cry, etc.). And as a consequence complex expressions which are
syntactically isomorphic may be interpreted differently. John laughed and Bill
cried may differ in truth value even though they are built in the same way from
syntactically isomorphic parts.

But, I claim, the procedures we use for interpreting isomorphic expressions
cannot be "radically” different. They must, in effect, be "isomorphic®. But just
what exactly does this mean? An example leads to the answer, F.

Imagine a function g which interprets lexical items of Lintle English as before
but which interprets the Ss generated by F1 as in (19), where BOOL(john,bill) is
the set of NPnoms buildable from {(john,NPnom), (bill, NPnom)} with
both...and..., either...or...,and neither...nor... and — is boolean complement.

g(c)(g(v)) if o € BOOL(john,bill)

(19) gFl(o,v) = {
—(g(o)(g(r)) otherwise
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So e.g. both john and tom laughed is true iff John laughed and Tom laughed. But
both john and bill laughed is true iff either John didn't laugh or Bill didn't laugh.
This is outrageous. What we say on this "semantics" about John and Tom is not
what we say about John and Bill in the isomorphic sentence. What is wrong here
is that in deciding how to interpret an expression, g refers to a set
BOOL(john,bill) which is not syntactically identifiable. (e.g. (john,NPnom) is in
it but (bob,NPnom) is not, even though these two NPs are isomorphic).

We now set up the general principle F which will rule out perverse atiempts
at interpretation like g.

Let L = L(G) be given. An inrerpretation of L is simply an arbitrary function
it with L included in its domain. So such a p assigns values to the expressions
of L. No assumptions are made concerning pu[L], the set of values of u. pfL]
might in particular be some appropriately coded form of "conceptual-intentional”
structure. Here we shall neutrally refer to p[L] simply as the "u world".

Observe though that where h is a structure map for L the notation p(h) makes
sense. We think here of h as the set of pairs <8,h(8)> for each expression 6
in L(G). Then u(h) is just the set of pairs <pu(d),u(h(d))>. And for F a
generating function of L, we write u(F) for the set of pairs <p(o),u(F(c))>,
where o is a sequence of elements of L(G) in the domain of F.

Now not just any way of interpreting a language is a conceptually possible
semantic interpretation. We require that semantic interpretations p are Jaithful
to the syntax of the language, as per (1) repeated as (20) below:

(20 F

Semantic interpretations of a Janguage L are faithful to the syntax of L
def 8 An interpretation p of a language L(G) is fairthful to the syntax of L(G) iff
p satisfies 1 and 2:

1.For all structure building functions F of G, p(F) is a (structure
building) function in pu[L]

2.For all structure maps h of G, p(h) is a (structure preserving) function

in pfL}

0



Discussion

The basic idea is that a semantic interpretation of a language not only interprets
the expressions, it respects the structure of L -- in particular it respects the
relation between a complex expression and what it is derived from, and it respect
the sameness of structure relation between different expressions built in the same
ways. In more detail:

1. F(1) says that if F builds 1 from o, F(o) = 1, then p(F) builds p(t) from
u(o), @F) (o) = u(r). Thatis, the following diagram commutes (a fact that
is guaranteed as long as p(F) as given above is a function):

F
c | > F(o)

) | > WF(@©))

(F)

Note that F(1) is just standard compositionality: if an expression t is derived
as a function F of a tuple o of expressions then the interpretation p(r) of tis a
function of the interpretation (o) of o. That function of course may depend on
how T was built from o, that is, on F.

2. F(2) is the condition that is properly new. It guarantees that expressions
with the same syntactic structure have the same semantic structure. Specifically,
the following diagram commutes:

h
5 | > h(0)
it p
n®) | > u(h(3))
u(h)
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We might note that as long as p(h) is a function then it preserves structure in
the 1 world: that is, it preserves the domains of the structure building functions
w(F) and it commutes with them'’.

3. Let us see that F(2) is independent of F(1). Let p be a function whose
domain is L(ENG) = Little English satisfying:

u(laughed,Pl) = {tom,bob,bill}, p(rom,NPnom) = tom, etc. and

n(o)(u(v))if o ¢ BOOL(<john,NPnom>, < bill, NPnom >)

wFle,9) =
—u(o)(1(1))] otherwise

So w(Fl) maps a pair <po,ut> to u(F1(<o,1>), as above. u(F2),
u(AND), etc. are defined similarly. Thus F(1) is satisfied.

Let h be a structure map which interchanges (fom,NPnom) and (bill, NPnom)
and maps each other lexical expression to itself. (There is such an h). Then,
omitting category indices for simplicity, and writing 1 for true and 0O for false,
suppose, leading to a contradiction, that p is a function. Then,

uhy(1) = uh)(u(tom)(p(aughed))) = p(h)(u(tom laughed))

= p(h(tom laughed)) = p(h(tom),h(laughed)) = p(bill laughed)
= ~[u@il)(u(aughed)] = —(1) = 0.

But also,

p(hy(1) u(h)(n(bob)(n(laughed)) = p(h)(r(bob laughed))

u(h(bob laughed)) = p(h(bob),h(laughed)) = p(bob laughed)
u(bob)(n(laughed)) = 1

So p(h)(1) = 1 and p(h)(1) = 0, contradiction. So FQ2) fails. ¥

4. Equally a simple language shows that F(2) does not entail F(1), and thus
the two conditions are independent'.
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4. Condition F implies Anaphor-Antecedent Asymmetry
We attempt to construct a language, L-SYM, in which AAA is violated.

(21) L violates Anaphor Antecedent Asymmetry iff L presents isomorphic
transitive Ss which are logically equivalent in which the anaphor in one 1s
mapped by the isomorphism to the antecedent in the second, and vice versa.

L-SYM is given schematically below:
Pl: laughed, cried P2: praised, criticized
NP1: john, bill, he NP2.1: john, bill, he NP2.2: john, bill, himself
F1: (s,NP1),(t,P1) = (s+t,5)
F2: Dom(F2) = {<0,1,n> |0,,T, € {NP2.1, NP2.2} & 0,21, & T, = P2}
F2(c,1,n) = (6, + 1, + 7y, S)
Coordination rules as usual, just combine expressions of the same category.

fact There is a (bijective) structure map h which maps all expressions of category
NP2.1 to ones of category NP2.2 and vice versa. h interchanges (john,NP2.1)
and (himself,NP2.2) and fixes all P2s. So (22a,b) are isomorphic in L-SYM.

(22) a. (john himself praised,S) b. (himself john praised,S)

Moreover the interpretations p we design make them logically equivalent.
These p interpret lexical items, Ss built by F1, and boolean compounds as
expected. Only the interpretation of expressions built by F2 is tricky.

u(o) () if (5,NP2.1) € I(G) and

n(F2(o,t,m) = {
n(R)(r(o(u(r))) otherwise

Thus a p looks at an expression (x +y + praised,S), checks if x is a string
of category NP2.1, in which case it interprets it as applying last. If x is not such
a string then the interpretation of (y,NP2.1) applies last and p(x,NP2.2) maps the
binary relation to a property. But these pt then must be able to tell whether an
expression is in PHgy[NP2.1], and this set is not syntactically identifiable (since
e.g. (john,NP2.1) is in it but (himself,NP2.2) is not). So it should be the case,
and is, that our p in general fail F(2).
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To see this, let p be a function with domain L-SYM, and let p identify
<john,NP2.1> and <john,NP2.2> (and ditto for <bill, ...>. (Actually this
requirment is almost forced since p is required to be a function and so must assign
just one value to e.g. <john bill praised,S> though this latter has two sources,
one with <john, NP2.1> and the other with <john, NP2.2>. Call this common
interpretation john. Let h be the identify on LEX except for the stipulations given
below in which h permutes the lexical elements of PHgyu[NP2.1] and
PH, [NP2.2].

h
NP2.1 ——> NP2.2

john >——‘—<—9himself
bill = 5 john
he €«————— bill

Then:

1. p(h)(john) p(h)(n <john,NP2.2>) = p(h(<john,NP2.2>)
= p(<john,NP2.1>) = john
so <john,john> € p(h)and
2. u(h)(john) = p(h)(u(<john, NP2.1>)
= pu(hGohn,NP2.1) = p(<himself NP2.2>) = self
so <john,self> e p(h), so p(h) is not a function, violating F(2). O
And in general if L does not syntactically distinguish anaphors and non-
anaphors then interpreting functions can not distinguish between them satisfying
F(2). But interpreting functions must distinguish between them in order to know
which to apply second in minimal transitive Ss. Thus an L which does not
distinguish between anaphors and non-anaphors will not admit of a faithful

interpreting function.

Thus does Fidelity predict Anaphor Antecedent Asymmetry.
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Footnotes

* This work was supported in part by the Social Sciences and Humanities
Research Council of Canada. My thanks also to Jim Lambek and the many
members of the McGill Mathematics and Statistics department to whom I
presented this work.

1. These would correspond to the LFs in the format of CH-92.

9. Cavear: F makes a claim that should be assessed on its own merits, and not
according to whether it captures anything intended in CH-92 (which I think it does
not). But reading CH-92 after presenting this principle I could not help but be
struck by the fact that F has many of the generality properties Chomsky associates
with "(virtual) conceptual necessity". It falls just short, it seems, of logical
necessity. Certainly the counterexample to F constructed in 3 is linguistically
unnatural. If further work supports the truth of F but places it outside the
"(virtual) conceptual necessities" countenanced within the Minimalist Framework,
we shall at least have learned something about the nature of those necessities.

3. While most work on anaphora in generative grammar is consistent with the
claim that the set of A-expressions (and the anaphor-antecedent relation) are
syntactically characterizable, that work generally lacks a semantic definition of
these notions and hence is conceptually unprepared to falsify these claims. Note
that the items which (on our view) are defined as A-expressions are syntactic
objects (expressions), but they are defined as those expressions which satisfy some
semantic condition. So it makes sense to ask if the grammar G provides the
syntactic tools to yield a syntactic definition of the same set. The case is quite
analogous to whether the set of logically true sentences in one or another
mathematical language can be syntactically defined. (And the answer is that it
depends on the language -- for some it can be, for others it cannot).

4. This usage is more widespread in England than is apparent from the literature.
I have also found American English speakers of Irish descent whose home
communities maintain this usage.

5. For presentational purposes I have, reluctantly, followed the Anglo-centric bias
implicit in the term 'scrambling' which takes the word order freedom in Korean
(Chinese, Bengali, Japanese, Malayalam) as a phenomenon which needs
explaining. An alternative view is that their word order freedom is simply the
consequence of not having applied FIX ORDER. There is no gain to fixing the
order of arguments, as the independently present morphology provides the desired
information. But applying FIX ORDER yields a benefit in morphologically
impoverished languages, as their NPs are dumb: they cannot tell us what their
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function is. So what we explain on this view is word order rigidity in English,
not its freedom in Korean.

6. Tt is worth noting however that the easy tests that discriminate €.g. John likes
himself and Himself John likes in English do not carry over to Korean. The
reflexive first order in English is largely limited to root clauses, does not feed
extraction (*the man that himself likes, *Who does himself like?) and does not
admit of a free choice of antecedent (*?Himself noone likes). But in Korean (and
Bengali) reflexive first order occurs easily in subordinate clauses, (i).

i. a Mary-ka caki-casin-ul hoyhap-eyse pinanhayssta
Mary-nom self-  -acc meeting-at criticized
Mary criticized herself at the meeting

b. caki-casin-ul Mary-ka  pinanhayssten hoyhap
self- -acc Mary-nom criticized meeting
the meeting at which Mary criticized herself

Also the major way of focussing on an "object” is not to "front" it, but rather
to mark it with a "Topic" postposition, in the preverbal position, (ii).

ii. Linda-ka  Mary-nun pinanhayssta
Linda-nom Mary-top criticized
Linda criticized MARY (as opposed to someone else)

So again in Korean morphology is used where word order and presumably
hierarchy variation are used in English.

7. Formally, L(G) =4 {B € V'xCAT|LEX c B & Bis closed wrt each F ¢ F}

8. More precisely, let {K},, be an indexed family of sets. Set G, = < K, I,
{<s,i>|s € K;},@>. Then L(G) = LEX and for each category i € I, the set
of strings of category i is exactly K.

9. The Thesis gets a basic idea right here, but it needs be generalized. One
approach is elaborated in Stabler & Keenan (1993).

10. A richer semantics is ultimately needed for natural language, but the

minimalist extensional representation here is sufficient to capture core facts
regarding binding and quantifier scope.
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11. proof:

1. p(h) preserves Dom(u(F)): Let p(8) € Dom(u(F)), so & € Dom(F). But
then h(8) € Dom(F) since h is a structure map and so preserves Dom(F). But

then p(h)(u@)) = nh(@®)) € Dom(u(F)).

2. p(h) commutes with p(F):

phyEps)) = nh)(pFd), def p(F)
= p(h(Fd)) def u(h)
= w(EnG))) h commutes with F
= uE®HE) def u(F)
= (uF)(uh)(ud)) def u(h)

o

12. Observe first that given any grammar G, a structure map h is the identity
function on L(G) iff for all 8 € LEX, h(8) = 8. (Proof by recursion: h maps
each & in LEX to itself, and if h maps a tuple o in Dom(F) to itself then h maps
F(o) to itself since h(F(c)) = F(h(c)) = F(0)).

Now we construct a simple G in which the only structure map is id, the
identity function. Since id = {<38,6> |8 € L(G)} then for any map u whose
domain includes L(G) , p(id) = {<ud,ud> |8 € L(G)} is a function. That is,
any map from L will send each structure map to a (structure preserving) function.

Let G have three generating functions: F, H, and K, with domains:

Dom(F) Dom(H) Dom(K)
<john,NP > < bill, NP > <john, NP>
< bill,NP > <sam,NP > <sam,NP>

Where ¢ is any of these functions and & any element of its domain, ¢(8) =4
<&, + laughed, S>.

Let p be given as follows: p maps all NPs to a fixed object a, and all other
expressions o to String(c). So p(F) contains < p(john,NP), w(E(ohn, NP)> =
<a, john laughed> and also <p(bill,NP),u(F(bill,NP))> = < a,bill laughed> .
So u(F) is not a function. O
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